If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k^2-16k-10=0
a = 8; b = -16; c = -10;
Δ = b2-4ac
Δ = -162-4·8·(-10)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-24}{2*8}=\frac{-8}{16} =-1/2 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+24}{2*8}=\frac{40}{16} =2+1/2 $
| 4*(x-2)=25 | | 1/3=9/k | | 4x-7x-5=0 | | 1/10=k/1 | | 4(2+x)=10 | | 4x^2-96=4 | | -4f^2+48f+68=0 | | 3x-1/4-x+2/2=1/4 | | 5x-8=-6x+14 | | a2=64 | | 1200+45n=1800=60n | | (x-3)^2-(3x-2)^2=0 | | 8x(-8x)=9 | | 2x-(x/x-1)=1+(1/x-1) | | 3u^2–12u=111 | | X+x.3=120 | | 8x-(-8)=9 | | 3u2–12u=111 | | 2x^2+x+8=x^2-5 | | 2x^2+8=x^2-5 | | 10x=2x+3 | | 3(2^x+1)-2^x+2^2+5=0 | | 94x/x+3=0 | | 6(2x+4)=4(3x | | 9-1(2x-6)=7x | | 2+x=7/8x-15 | | 8x+3-12+4=0 | | 4^x=-12 | | 3n/4+1=10 | | 16x2-81=0 | | 3,01y+2=-0,99y-2 | | (3x+10)+(2x-10)=180 |